An integrated algorithm for hypersonic fluid–thermal–structural analysis of aerodynamically heated cylindrical leading edge

Author:

Li Jiawei1ORCID,Wang Jiangfeng1

Affiliation:

1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China

Abstract

The accurate and efficient prediction of the fluid–thermal–structural performance of thermal protection systems on hypersonic vehicles to protect against severe aerodynamic heating is attracting increasing worldwide attention. In this paper, a new integrated fluid-structural-thermal investigation based on the finite volume method is proposed to study the thermal behavior of aerodynamically heated cylinder leading edges in hypersonic flows. A unified integral equation system is developed based on the governing equations for the physical processes of aerodynamic heating and structural heat transfer, which is resolved by using an up-wind finite volume method and a new two-thermal-resistance model in one integrated, vectorized computer program. To demonstrate its capability and reliability, applications for steady/unsteady fluid–thermal–structural analysis are demonstrated on aerodynamically heated cylinder leading edges at Ma 6.47. The results show that the steady maximum temperature of the cylinder can reach approximately 648 K at the stagnation point, and the unsteady results are in good agreement with the experimental data and related references. Compared with the partitioned approach, the integrated method shows better computational stability with relatively small sensitivity to mesh scale and time step, reducing the computation time for the same unsteady case by approximately 50%. The present study indicates that the integrated approach has potential for significant improvements and efficiency in predicting long-endurance fluid-structural-thermal problems of hypersonic vehicles.

Funder

National Natural Science Foundation of China

the Short Visit Program for Doctoral Students in NUAA

the Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3