Experimental investigation on ignition limits of plasma-assisted ignition in the propane–air mixture

Author:

Yu Jinlu1,He Liming1,Hu Zhi1,Zhang Qian1,Xiao Yang2,Jiang Yongjian2,Wu Yong2

Affiliation:

1. The Engineering Institute, Air Force Engineering University, Xi’an, Shaanxi, China

2. General Staff Army Aviation Institute, Beijing, China

Abstract

In recent past, the plasma-assisted ignition has been explored for applications on a variety of engines. The plasma ignition has been shown to possess special advantages such as reducing the ignition delay time, improving the reliability, and reducing the NOx emissions. By using a plasma jet ignition experimental system, the plasma jet ignition of argon-discharge arc has been investigated. Owing to the characteristics of high temperature, the mixture can be easily ignited by the plasma jet. Through the propane–air mixture ignition experiments, the ignition limits of the plasma jet and spark ignition are investigated. The results show that the plasma jet ignition could extend the ignition limits of propane–air mixture obviously. The ignition limit extends with the increase in the air flow rates. The average ignition limit (the gap between rich and lean limit) of spark ignition and plasma jet ignition are 2.34 and 2.57, respectively. The average ignition limit of the propane–air mixture extends by 9.8%. The plasma jet ignition limit extends with increasing arc current, and the degree of extending plasma jet ignition limit increases with increasing air flow rates. The average ignition limits of 5.7 A and 20.3 A are 2.57 and 2.79, respectively. The average ignition limit of the propane–air mixture extends by 8.5%. The plasma jet ignition limit extends with increasing argon flow rates. The average ignition limits of 200 L/h and 250 L/h are 2.79 and 3.08, respectively. The average ignition limit of the propane–air mixture extends by 10.4%.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3