Leading edge redesign of dual-peak type variable inlet guide vane and its effect on aerodynamic performance

Author:

Shi Hengtao1ORCID,Ji Lucheng1

Affiliation:

1. Institute for Aero Engine, Tsinghua University, Beijing, China

Abstract

Recently, a new type airfoil for variable inlet guide vane (VIGV), featuring “dual-peak” surface velocity pattern at high incidence, is proposed and shows wide low-loss operation range. To further improve its performance, this paper researches the influence of leading edge (LE) thickness and shape on the loss level and surface velocity features of the “dual-peak” type airfoil. Firstly, a polynomial-based continuous-curvature leading edge design method was briefly introduced and used in the LE redesign of sample airfoils. Then, steady simulations based on Reynolds-Averaged Navier-Stokes method (RANS), carried out by commercial software CFX after grid independent study, were used to determine the aerodynamic performance, surface velocity distribution and boundary-layer behaviors of all research airfoils. Simulation results indicate that there exists an optimized range of LE relative thickness that can achieve lower airfoil loss level at high incidence condition. For Case 1 ([Formula: see text]) and Case 2 ([Formula: see text]), the optimized LE relative thickness range is [Formula: see text] and [Formula: see text]. The LE shape optimization can further reduce the maximum incidence condition loss coefficient with proportion up to 18% for airfoils with optimal LE thickness. Analysis of flow mechanism indicates that the optimized LE thickness and shape can reduce the suction spike height and subsequent adverse pressure gradient, therefore, decrease the LE separation scale and result in a lower loss coefficient. As an application, a dual peak VIGV with circular LE, presented in previous paper as the optimized VIGV, is redesigned in the LE portion according to the research findings and achieved 0.6 percent improvement in passage-averaged total pressure recovery coefficient [Formula: see text] at extreme high stagger angle point and the low-loss operation range extends with about 5°, which confirms the effectiveness of the research findings in three-dimensional environment.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3