Efficiency of rocket engine thrust vector control by solid obstacle on the nozzle wall

Author:

Strelnikov Genadii1,Ihnatiev Oleksandr1,Pryadko Nataliya1ORCID,Ternova Katerina1

Affiliation:

1. The Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine, Dnipro, Ukraine

Abstract

The thrust vector control of a rocket engine by disturbing the supersonic flow in its nozzle is used for missile development for various purposes in different countries. Disturbance of the supersonic flow in the jet engine nozzle can be caused by various obstacles on the nozzle wall: solid obstacle, liquid or gas jet, combinations of solid obstacle with injected jets. The simplest and most effective way to create a disturbance is to disturb it by setting a solid cylindrical obstacle on the nozzle wall. The high efficiency is explained by the lack of the working fluid consumption on board the aircraft to create a control force, or its minimum amount necessary to protect the obstacle from the high-temperature oncoming gas flow in the rocket engine nozzle. This paper presents the study results of gas flow simulation with cylindrical obstacle perturbation on the wall of the Laval rocket engine nozzle in its subsonic and supersonic parts. The optimal placement in the nozzle is determined to obtain the maximum lateral control force. As a result of research, it was found that the perturbation of a supersonic flow in a rocket engine nozzle by a cylindrical obstacle has practically the same character when its position changes along the length of the nozzle. In the subsonic part of the nozzle in the median plane, the perturbed pressure on the wall has a positive sign, and on the obstacle wall its sign-alternating. When an obstacle is in the subsonic part of the nozzle, the integral value of the lateral force is negative in comparison with positive for the supersonic part.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3