Effect of the trailing-edge flap on tones due to self-excited oscillation within the leading-edge slat cove

Author:

Lu Weishuang1234,Liu Peiqing123,Guo Hao123ORCID

Affiliation:

1. Key Laboratory of Aero-Acoustics (Beihang University), Ministry of Industry and Information Technology, Beijing, China

2. Key Laboratory of Fluid Mechanics (Beihang University), Ministry of Education, Beijing, China

3. School of Aeronautic Science and Engineering, Beihang University, Beijing, China

4. Institute of Mechanics, Chinese Academy of Sciences, Beijing, China

Abstract

To study the tonal noise characteristics of the leading-edge slat of high-lift configurations with and without a deployed trailing-edge flap, experiments are conducted in the D5 aero-acoustic wind tunnel at Beihang University. The numerical simulation method is used to obtain the necessary flow information. The experimental results show that low to mid frequency tonal noise generated by self-excited oscillation within the slat cove is dominant and its corresponding frequencies are basically unchanged whether the flap is deployed or not. However, the primary mode of self-excited oscillation within the slat cove switches to a higher one when the flap is deployed. Further analysis results demonstrate that variation of the primary mode is found to be closely related to the flow characteristics in the self-excited oscillation feedback loop. The number of the primary mode is generally proportional to the ratio between the vortex shedding frequency and the self-excited oscillation frequency. The flap being deployed results in an increase in the effective angle of attack of both the main wing and slat, which leads to a thinner separating boundary layer, thus increasing further the vortex shedding frequency and this ratio.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noise Emission from the Flap Profile of a Two-Element 30P30N High-Lift Airfoil;30th AIAA/CEAS Aeroacoustics Conference (2024);2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3