Gradient-like minimization methods for aeroengines diagnosis and control

Author:

Sánchez de León L1ORCID,Rodrigo J2ORCID,Vega JM3,Montañés JL1

Affiliation:

1. Department of Fluid Mechanics and Aerospace Propulsion, Technical University of Madrid (UPM), Madrid, Spain

2. Aeroderivative Services Conversions Modifications and Upgrades, GE Power, Madrid, Spain

3. Department of Mathematics Applied in Aerospace Engineering, Technical University of Madrid (UPM), Madrid, Spain

Abstract

Nowadays, there is an ever growing interest for gas turbine and aeroengines prognostics. The capability to assess not only the current state of an asset, but also to be able to predict its remaining useful life (RUL), and hence to perform condition-based maintenance (CBM) —if, and only when, it is needed— can represent a huge deal in the manufacturer profits. Against the plethora of data-driven methods that have arisen in the past few years, there is still some knowledge to be gained in terms of understanding the underlying phenomenology of engine degradation. In fact, it is certainly a non-trivial problem, to realize what has happened to the rotating components of an engine just by observing the pressure being measured by certain sensor rise, or some other temperature measured along the main gas-path decrease its value. In this regard, model-based approaches —and, in particular, gas path analysis (GPA)— can assist us in gaining such knowledge. In this paper, a non-linear GPA technique is revisited, introducing some novelties to the solver, and making use of current computational methods and resources, to establish a solid ‘foundation’ that will serve as the basis for further research.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3