Affiliation:
1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, People’s Republic of China
Abstract
This paper addresses the microvibration suppression problem for space truss structures by using viscoelastic dampers (VEDs). Based on the principle of virtual work, a finite element dynamic model of a spacecraft consisting of a reaction wheels assembly (RWA), a truss support structure, VEDs, and an optic camera is built. The angular displacement response function of the structure at the camera optic axis excited by the RWA disturbance forces is obtained. Then an optimization model is built in which an improved average pointing stability metric is adopted as the objective function, and the placement, number, and design parameters of VEDs are considered as optimal variables. To solve the presented discrete–continuous optimization problem, a new hybrid algorithm that has combined the advantage of the differential evolution (DE) algorithm and the simulated annealing (SA) algorithm is presented. Simulation results demonstrate that the present method can find the optimal solution faster than DE. Finally, the disturbance forces data of the RWA are measured by experiment, and were used as the system input to simulate the pointing stability of the optic camera in three cases: without VEDs, with VEDs (initial parameters), and with VEDs (optimal parameters). The results indicate that VEDs with optimized parameters can significantly improve the pointing stability of the optic camera.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献