Improved disturbance rejection control based on H∞ synthesis and equivalent-input-disturbance for aircraft longitudinal autopilot design

Author:

Li Tong1ORCID,Yang Huabo1,Tian Jiayi1,Zhang Shifeng1ORCID

Affiliation:

1. College of Aerospace Science and Engineering, National University of Defense and Technology, Changsha, China

Abstract

Disturbance rejection control has been developed over decades attracting wide interest and research attention. Aiming at providing a potential engineering application of disturbance rejection control to aircraft control system design following traditional frequency-domain methods, this paper presents an improved disturbance rejection control of two degrees of freedom based on [Formula: see text] synthesis and equivalent-input-disturbance for an aircraft longitudinal autopilot design. The mismatched disturbance is transformed as a “total disturbance” in the input channel for compensation through the establishment of an equivalent-input-disturbance system. The [Formula: see text] synthesis based on classical frequency-domain analysis is applied to a disturbance filter and a composite feedback controller design. In terms of the controller design, the system including the filter is considered as a whole in [Formula: see text] optimization process without separate design to guarantee the stability of the overall system. Furthermore, the proposed method is successfully implemented on the autopilot design by modeling nonlinear aircraft longitudinal dynamics as a linear equivalent-input-disturbance formulation of angle of attack. The simulation of tracking performance in comparison with existing renowned methods is conducted in the presence of aerodynamic uncertainties, gust disturbance, actuator characteristics and sensor noise. The results verify the effectiveness of the proposed method with excellent performance and practical prospects.

Funder

China Scholarship Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive feedforward control for crosswind landing with variable step size;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2021-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3