Affiliation:
1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Abstract
A cruciform-finned slender body can excite a limit-cycle rolling oscillation at high angles of attack. To suppress the unwanted motions, flow control approaches should be employed if the aerodynamic control surfaces lose control efficiency at high angles of attack. As a promising technology, the ns-dielectric barrier discharge plasma actuator has been successfully used in high-speed and high-Reynolds-number flow control applications. The present work employs a π-type ns-dielectric barrier discharge plasma actuator and vortex generators to suppress self-excited rolling oscillation at α = 50°. The free-to-roll tests show that the plasma actuator ignited at F+ ∼ 1.5 and that the vortex generators can suppress rolling oscillation. The flow patterns from particle image velocimetry measurement at different cross-sections and rolling angles suggest that the vorticity decrease of the leeward vortices may be the control mechanism for the plasma actuator. For the vortex generators, evident modification of the flow field structure can be observed due to the vortices generated from the vortex generators, which decreases the rolling moment induced by the asymmetry vortices to suppress the self-excited rolling oscillation.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献