Multi-field coupling dynamic characteristics based on Kriging interpolation method

Author:

Yang Wenjun1,Yuan Huiqun12,Zhao Tianyu1

Affiliation:

1. School of Mechanical Engineering & Automation, Northeastern University, P. R. China

2. College of Science, Northeastern University, P. R. China

Abstract

Multi-field coupling problems are taken more and more attention mainly because of the higher requirement of load, efficiency, and reliability in aero-engine operation. This research takes an aero-engine compressor as the research object, 3D flow field and structural models are established. For the method of cyclic symmetric, single-sector model is selected as the calculation domain. Considering the influence of former stator wakes, compressor flow field is simulated. The article analyzes the distribution law of unsteady aerodynamic load on rotor blade. Based on Kriging model, load transfer of aerodynamic pressure and temperature is achieved from flow field to blade structure. Then the effects of centrifugal force, aerodynamic pressure and temperature load are discussed on compressor vibration characteristic and structural strength. The results show dominant fluctuation frequencies of aerodynamic load on rotor blade are manly at frequency doubling of stator–rotor interaction, especially at one time frequency (1 ×  f0). Magnitude and pulsation amplitude on pressure surface are far greater than that on suction surface. Load transfer with Kriging model has a higher precision, it can meet the requirement of multi-field coupling dynamic calculation. In multi-field coupling interaction, temperature load makes the natural vibration frequencies decrease obviously, centrifugal force is the main source of deformation and stress. Bending stress induced by aerodynamic pressure and temperature load can counteract part of bending stress induced by centrifugal force. However, temperature load causes the maximum displacement of blade-disk system to increase.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3