Effect of endwall vortex generator jets on flow separation control in a linear compressor cascade

Author:

Feng Yanyan1,Song Yanping1,Chen Fu1,Liu Huaping1

Affiliation:

1. Harbin Institute of Technology, Harbin, Heilongjiang, China

Abstract

As a 50° camber angle compressor cascade being the object, the numerical investigations of the endwall vortex generator jets effect on flow separation control were conducted. The results show that the flow separation is significantly weakened and the maximum total pressure loss reduction is 9.5% at Mach number 0.23. When the cascade inlet Mach number is 0.71, more benefit is obtained and the total pressure loss is reduced by up to 14.8%. A primary streamwise vortex is produced by the interaction of endwall jet with the coming flow. This vortex could restrain the transverse movement of the endwall secondary flow and entrain high energy fluid of the mainstream to the corner region. Both of the aspects are of benefits for the flow momentum increasing in the corner region. Thus, the flow separation is suppressed efficiently. The location and intensity of the streamwise vortex are important to the performance of vortex generator jet. For the object investigated in this paper, the proper jet location is around 10% axial chord length before the cascade and meanwhile close to the suction surface. To avoid strong mixing losses, the intensity of the streamwise vortex is suggested be moderate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Control mechanism of vortex-generator jet on turbulent separation in a highly loaded compressor cascade;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-03-10

2. Loss reduction in a high-speed compressor cascade using an L-shaped endwall groove to generate a streamwise vortex;Aerospace Science and Technology;2022-04

3. Optimization of the hole exit shape of the vortex generator jets in a compressor cascade;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2021-03-27

4. Numerical Investigation of Three-dimensional Separation Control on a High-speed Compressor Stator Vane with Tailored Synthetic Jet;International Journal of Turbo & Jet-Engines;2020-11-18

5. Stability Improvement of a High-Pressure Ratio Centrifugal Compressor by Flow Injection;Journal of Aerospace Engineering;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3