RBF neural network-based sliding mode vibration control of a flexible cantilever plate using laser displacement measurement

Author:

Qiu Zhi-Cheng1,Zhang Si-Ma1

Affiliation:

1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, PR China

Abstract

This paper is concerned with active vibration control of a flexible piezoelectric cantilever plate using a nonlinear radial basis neural network sliding mode control (RBFNN-SMC) algorithm and laser displacement measurement. In order to decouple the low-frequency vibration signals of the bending and torsional modes on measurement, two laser displacement sensors are used. The decoupling method is provided. A hyperbolic tangent function is used instead of the sign function, and the chattering phenomenon is alleviated. Also, the RBFNN is utilized to adjust the switching control gain adaptively to balance the chattering phenomenon and the control effect. The controllers for bending and torsional modes are designed independently. Experimental setup of the flexible piezoelectric cantilever plate with two laser displacement sensors is constructed. Experiments on vibration measurement and control are conducted by using the decoupling method and the designed controller, compared with the classical proportional and derivative (PD) control algorithm. The experimental results demonstrate that the proposed method can decouple the low-frequency bending and torsional vibration signals on measurement. Furthermore, the designed nonlinear RBFNN-SMC can suppress both the bending and torsional vibrations more quickly than the traditional linear PD controller, especially for the small amplitude residual vibration.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integral terminal sliding-mode robust vibration control of large space intelligent truss structures using a disturbance observer;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2021-06-29

2. Integral Sliding-Mode Tracking Control for Heavy Vehicle Electrohydraulic Power Steering System;IEEE/ASME Transactions on Mechatronics;2021-06

3. Active disturbance rejection vibration control for an all-clamped piezoelectric plate with delay;Control Engineering Practice;2021-03

4. Sliding mode predictive vibration control of a piezoelectric flexible plate;Journal of Intelligent Material Systems and Structures;2020-08-20

5. Measurement method of tooth friction force for helical gears by laser displacement sensor;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2020-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3