Affiliation:
1. School of Astronautics, Beihang University, Beijing, China
Abstract
The real-time trajectory replanning method which is used for the guidance of Mars entry is investigated in this paper. Comparing with the traditional Mars entry guidance methods, such as the reference-trajectory tracking guidance and predictor–corrector guidance, the real-time trajectory replanning method can increase the reliability of the mission remarkably. When faults occur during the Mars entry phase, a replacement trajectory will be planned quickly. Due to the limited onboard computing capacity, replanning the trajectory onboard is a challenging task. Corresponding to this problem, the neural network is trained to approximate the dynamics of the atmospheric entry. The uncertain factor of the atmospheric density is also included in the neural network. Then, by using the characters of the neural network, the analytical expressions of the Jacobian which are needed in trajectory optimization are derived. Finally, an estimation-replanning guidance procedure is introduced. The numerical simulation shows that the proposed guidance strategy can decrease the error of final states effectively, and the neural network approximation improves the computational speed of the nonlinear programming solver remarkably, which makes the method more suitable for use onboard.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献