A proportional derivative sliding mode control for an overactuated quadcopter

Author:

Alkamachi Ahmed1,Erçelebi Ergun2

Affiliation:

1. Department of Mechatronics, Al-Khwarizmi College of Engineering, University of Baghdad, Iraq

2. Department of Electrical and Electronics Engineering, University of Gaziantep, Turkey

Abstract

Traditional quadcopters suffer from their intrinsic underactuation, which prevents them from tracking arbitrary trajectories. In this study, a step-by-step mathematical modeling of a tilt rotor quadcopter, i.e. a quadcopter with all its four rotors are allowed to be tilted independently around their arms’ extension, is derived. The tilting mechanism converts the classical quadcopter to an overactuated flying vehicle that has full control over its states. The nonlinear dynamical model is derived based on the Newton–Euler formalization. A novel trajectory tracking control scheme is then proposed and developed. The proposed controller combines the proportional derivative linear controller with the nonlinear sliding mode controller. In order to reduce the chattering effect of the sliding mode controller, the discontinuous Signum switching function is replaced by a continuous sigmoidal function. The controller parameters are then tuned with the aid of genetic algorithm as an optimization tool. The genetic algorithm objective function is set so as to get the best step response characteristics. A simulation based analysis is used to proof the system and controller capability in following complex trajectories. Finally, the proposed controller robustness and effectiveness are analyzed. The simulation test results reveal the validity and feasibility of the proportional derivative sliding mode controller. The proposed controller also performed well in the face of modeling imprecision, sensor noise, and external disturbances.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Are Tilt Quadrotors More Energy-Efficient Than Conventional Quadrotors? A Preliminary Study;2024 International Conference on Unmanned Aircraft Systems (ICUAS);2024-06-04

2. Dynamic Modeling and Sliding Mode Control of an Over-Actuated Quadrotor with Variable Hedral Angle of Propeller Axes;2024 2nd International Conference on Unmanned Vehicle Systems-Oman (UVS);2024-02-12

3. Torque control of Quadcopter using Fractional Active Disturbance Rejection Control;2023 IEEE 14th International Conference on Power Electronics and Drive Systems (PEDS);2023-08-07

4. Optimized Uncertainty and Disturbance Estimator Based Robust Controller for Micro Aerial Vehicle;Journal of Computational and Nonlinear Dynamics;2022-09-16

5. Modeling and Control of port dynamics of a tilt-rotor quadcopter;IFAC-PapersOnLine;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3