Reducing helicopter 1/rev vibration using extendable trailing-edge plate

Author:

Ji Xiaomiao1ORCID,Yang Mao1,Ning Chenxi1

Affiliation:

1. School of Astronautics, Northwestern Polytechnical University, Xi’an, China

Abstract

Due to manufacturing errors and wear, helicopter rotor blades are not completely similar resulting in significant 1/rev fuselage vibration. In practice, rotor track and balance (RTB) based on neural network is used to eliminate the 1/rev vibration. This greatly increases the maintenance workload and cannot adjust the 1/rev vibration in flight. In view of this, a new RTB approach, namely, extendable trailing-edge plate (TEP), is studied in the present paper. Since TEP extension changes the profile of the baseline airfoil, the computational fluid dynamics (CFD) calculation is performed to study the aerodynamic characteristics of the airfoil with the extendable TEP under different extension amounts. Combined with the aerodynamic characteristics of the extendable TEP airfoil, a comprehensive helicopter aeromechanic analysis program adapted to the extendable TEP mechanism is used to explore the effects of the extendable TEP on the 1/rev fuselage vibration and hub loads. In addition, by analyzing the hub loads and the acceleration of the fuselage caused by the extendable TEP device, the mechanism of action is studied. Results show that the adjustment method based on extendable TEP is able to reduce the 1/rev acceleration of the fuselage by up to 85%–95%, which is about 8% higher than that of neural network-based algorithm. Therefore, the extendable TEP has great potential in RTB (i.e., eliminating rotor inherent dissimilarity). In addition, the factors that affect the 1/rev vertical vibration level of the airframe under different flight conditions are different.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference17 articles.

1. Formulation of a Helicopter Rotor System Damage Detection Methodology

2. Simulation of Helicopter Rotor-System Structural Damage, Blade Mistracking, Friction, and Freeplay

3. A feasibility study of using smart materials for rotor control

4. Leon O, Hayden E, Gandhi F. Rotorcraft operating envelope expansion using extendable chord sections. In: American Helicopter Society 65th Annual Forum Proceedings, Ft. Worth, TX, 27–29 May, 2009.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3