Alpha-SIM: A quick 3D geometry model simplification approach to support aircraft EWIS routing

Author:

Zhu Zaoxu12ORCID,Rocca G La2,Zheng Yao1,Chen Jianjun1

Affiliation:

1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, P.R. China

2. Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands

Abstract

Routing design of aircraft Electrical Wiring Interconnection System (EWIS) is time-consuming and error-prone. A solution, which automatically routes the EWIS inside the aircraft Digital MockUp (DMU), has been proposed and presented in the previous publications. The DMU, however, includes over-detailed features, which hardly influence the routing results but significantly increase the geometry-involved computational time thus hampering any automated routing. These features cannot be easily and efficiently suppressed. Therefore, a quick 3 D geometry simplification method, named Alpha-SIM, is proposed to enable a quick simplification of the airframe components included in the DMU and improve the benefit of the aforementioned automatic EWIS routing approach. The method is inspired by Descriptive Geometry techniques and the 3 D modelling approach using 2 D sketches, and aims at removing very detailed and/or internal features while preserving the intuitive notional shape of the given CAD model. The intuitive notional shape is represented by a 3 D point cloud of the model outer boundary and their 2 D projections on user-defined planes. These 2 D projections are then processed such to generate a set of 2 D profiles, called Alpha-Shapes, which are used, eventually, to re-build the 3 D model of the DMU components in a simplified/de-featured manner. By controlling the density of the 3 D points and the Alpha value to generate the 2 D profiles from the point projections, various geometric approximation levels can be achieved. The results of the test cases demonstrate the efficiency and effectiveness of the proposed method on the geometry simplification for automatic EWIS routing.

Funder

Fokker Elmo B.V.

Zhejiang Provincial Postdoctoral Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3