Time-marching solution of transonic flows at axial turbomachinery meanline

Author:

Taddei Simone Rosa1ORCID

Affiliation:

1. Independent researcher, formerly at Politecnico di Torino (Italy), Department of Mechanical and Aerospace Engineering, Aerospace Propulsion Group

Abstract

A new blade force model is coupled to quasi-one dimensional Euler equations for a variable geometry flowpath. After analytical inclusion of the blade force, the flow equations take a strictly one-dimensional form with specific expressions of the convective flux and blade load source terms. Regardless of the flow turning, that is simply achieved by the load source term as an explicit function of the blade camber, the new form describes a perfect analogy between the average flow inside a blade passage and strictly one-dimensional flows, especially concerning wave propagation. This property allows capture of passage choking and shocks. Other types of shock more important for turbomachinery analysis, like leading edge strong shocks in compressors and trailing edge weak shocks in choked turbines, are modelled by properly matching the new set of equations inside blade regions with the standard quasi-one dimensional equations outside. Upon specification of viscous losses and subsonic deviations fitted from experimental results, the model predicts the choke mass flow of a transonic compressor stage (NASA stage 37) at a 0.1% to 0.4% accuracy both in the absence and in the presence of the leading edge shock. This result supports the effectiveness of the leading edge shock model. The accuracy on choke mass flow would decrease to around 1% if empirical input was specified from open-literature experimental correlations. The model captures the typical trend of exit angle with total pressure ratio for a choked turbine (NASA Lewis two-stage). This result involves satisfactory prediction of not only choke mass flow, but also trailing edge shock loss and supersonic deviation. The complete turbine operational map in terms of shaft torque and pressure ratio is also re-obtained with noticeable accuracy except in strong off-design conditions, where experimental correlations likely fail.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3