Experimental analysis of cell pattern on grid fin aerodynamics in subsonic flow

Author:

Tripathi Manish1ORCID,Sucheendran Mahesh M2,Misra Ajay1

Affiliation:

1. Department of Aerospace Engineering, Defence Institute of Advanced Technology, Pune, Maharashtra, India

2. Department of Mechanical and Aerospace Engineering, IIT Hyderabad, Telangana, India

Abstract

Grid fins consisting of a lattice of high aspect ratio planar members encompassed by an outer frame are unconventional control surfaces used on numerous missiles and bombs due to their enhanced lifting characteristics at high angles of attack and across wider Mach number regimes. The current paper accomplishes and compares the effect of different grid fin patterns on subsonic flow aerodynamics of grid fins by virtue of the determination of their respective aerodynamic forces. Furthermore, this study deliberates the impact of gap variation on aerodynamics of different patterns. Results enunciate enhanced aerodynamic efficiency, and lift slope for web-fin cells and single diamond patterns compared to the baseline model. Moreover, the study indicates improved aerodynamic performance for diamond patterns with higher gaps by providing elevated maximum lift coefficient, delayed stall angle, and comparable drag at lower angles. The study established the presence of an additional effect termed as the inclination effect alongside the cascade effect leading to deviations with respect to lift, stall, and aerodynamic efficiency amongst different gap variants of the individual patterns. Thus, optimization based on the aerodynamic efficiency, stall angle requirements, and construction cost by optimum pattern and gap selection can be carried out through this analysis, which can lead to elevated aerodynamic performance for grid fins.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3