Affiliation:
1. College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
Abstract
In the boundary layer ingesting propulsion system, the compressor suffers from a non-uniform flow field. The compressor operating with distorted inflow continuously results in the loss of aerodynamic performance and stability margin. In this paper, three non-axisymmetric configurations are described for the stator of a transonic compressor to match the non-uniform flow field. The flow fields with distorted inflow at near stall condition are obtained and analyzed, the effects of the prototype stator and the three non-axisymmetric stators on aerodynamic performance are compared in detail. Results show that the non-axisymmetric stator schemes can effectively improve the stability margin of the transonic compressor and the maximum stability margin is relatively increased by 22.3% in all the three non-axisymmetric stators. The non-axisymmetric stator design is effective on decreasing the aerodynamic losses and improving the performance of the compressor operating with distorted inflow. Overall, the results show that in the design of the non-axisymmetric stator, the adoption of a curved-twisted blade and the increase of cascade solidity have the potential to reduce loss sources caused by distorted inflow.
Funder
Fundamental Research Funds for the Central Universities
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献