Flow control via instabilities, vortices and steady structures under the action of external microwave energy release

Author:

Azarova Olga1,Knight Doyle2,Kolesnichenko Yuri3

Affiliation:

1. Department of Mathematical Modeling of CAD Systems, Dorodnicyn Computing Center of RAS, Moscow, Russia

2. Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, USA

3. Department of MHD and Low Temperature Plasma, Joint Institute for High Temperatures RAS, Moscow, Russia

Abstract

The details of flow dynamics during the interaction of a microwave filament (regarded as heated rarefied channel) with an aerodynamic body in supersonic flow are considered. Flow control via the effect on the frontal drag force is discussed. The mechanisms of the drag force reduction for a symmetrically located filament and temporary drag force enhancement for an asymmetrically located filament are established. These mechanisms are attributable to the vortex structures forming via the instabilities in front of the body and inside the shock layer. Three kinds of flow instabilities inside the shock layer are analyzed numerically. These are the Richtmeyer–Meshkov instability, the shear layer instability of Kelvin–Helmholtz type and the instability of a flat-parallel tangential discontinuity. The last instability is shown to be accompanied by generation of steady flow structures. A comparative analysis of the resultant vortices and structures is conducted. Limited length and infinite length filaments are considered. The flowfields are investigated for freestream Mach numbers equal to 1.89 and 3, and a wide range of filament characteristics.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3