Advanced fault detection and diagnosis in spacecraft attitude control systems: Current state and challenges

Author:

Pourtakdoust Seid H1ORCID,Fakhari Mehrjardi Mohamad1,Hajkarim Mohammad Hossein2ORCID,Nasihati Gourabi Forough12

Affiliation:

1. Center for Research and Development in Space Science and Technology, Sharif University of Technology, Tehran, Iran

2. Aerospace Engineering, Sharif University of Technology, Tehran, Iran

Abstract

A review of advanced fault detection and diagnosis (FDD) techniques in attitude control systems (ACSs) of spacecraft is presented. In the first part of the paper, several types of ACS failure scenarios with their practical solutions are presented. Next, the existing approaches to FDD are considered and classified based on different criteria, including applications and design techniques. The literature of this part showed that to enhance ACS operational safety, predictability of failure of an ACS and/or of its components as well as reducing the possibility of failure occurrence is imperative. In addition, fast FDD of various kinds of failures is necessary to guarantee the required reliability of an ACS. The second part of this study highlights challenges involved with different FDD approaches, emphasizing their practical applicability. Current research gaps in FDD techniques such as insensitive residual signal, process monitoring methods, accurate plant model design, easy-to-use software development, FDD tuning process, dealing with noisy sensor measurements, time taken for fault management, the sensitivity of FDD system to faults, and FDD robustness are further elaborated on. Subsequently, the state-of-the-art FDD and its future needs are reflected on. The results of this study could direct spacecraft manufacturers and ACS providers to focus on future needs and improve ground testing for enhanced operational reliability and redundancy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3