Multidisciplinary optimization methodology for truss-braced wing aircraft using high-fidelity structure sizing

Author:

Hosseini Saeed1ORCID,Vaziry-Zanjany Mohammad Ali1,Ovesy Hamid Reza1ORCID

Affiliation:

1. Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

In this research, a method is developed to optimize the truss-braced wing aircraft configuration in a multidisciplinary design framework. Physics-based high-fidelity methods, that can capture the nature of the configuration changes, are employed for the disciplines where the existing classical methods are not reliable. High-fidelity geometry modeling, structure loading, structure optimization, and aeroelastic sizing methods are integrated into the aircraft multidisciplinary design and optimization. The developed algorithm is applied for the multi-objective optimization of a regional jet aircraft to minimize the cost and weight. The results demonstrate that the cost-optimum solution converges to a higher aspect ratio wing equipped with a higher bypass ratio engine, and a 7.94% reduction in the direct operating cost can be achieved. On the other hand, the weight-optimum wing planform tends to a slightly lower aspect ratio wing with a lower bypass ratio engine, while a 6.18% reduction in take-off weight is achieved. In addition to that, the findings of this study highlight the considerable effect that the engine technology has on the optimum layout, which suggests that the engine technology and its performance should also be a part of the design optimization process. The developed modular framework offers further optimization potential for the truss-braced wing aircraft, as more detailed models can be integrated.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3