Optimal design of tapered composite structures with a dynamic boundary subset blending model

Author:

Zhang Zijian1,Ma Xiaoping1,Jin Peng2ORCID

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, P. R. China

2. School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, P. R. China

Abstract

Based on the classical bending rule that the plies composing the thinner region should be a subset of the ones of the thicker region for two adjacent laminates, a genetic algorithm–based dynamic boundary subset blending model is proposed to optimize the global stacking sequence of composite structures with ply-drops. Besides the stacking sequence chromosome of the guide laminate and ply number chromosome of each panel, a chromosome of a dynamic boundary subset factor is introduced for each panel to obtain a fully blended design. The lower and upper bounds of the dynamic boundary subset factor chromosome for each panel is determined by the ply number chromosomes of the panel and its adjacent panels. The stacking sequence of each panel can be determined by selection from combinations of various stacking sequences. The proposed blending model can solve the problem that laminates with identical thicknesses have the completely same layups even when they are not adjacent to each other. The optimal feasible designs outperform other published solutions for the 18-panel horseshoe configuration problem based on the classical bending rule.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3