Kalman filter identification method for micro-vibration transfer paths of satellites

Author:

Shen Yan1,Xu Yang1ORCID,Sheng Xiaowei1,Yin Xianbo1

Affiliation:

1. College of Mechanical Engineering, Donghua University, Shanghai, China

Abstract

Micro-vibrations on-board a satellite have degrading effects on the performance of certain payloads like observation cameras. The major sources of vibrations include momentum wheels, solar array drives, other rotary mechanical equipment, etc. These vibrations result in loss of the pointing precision and image quality of the payload through intricate transfer paths. To improve the accuracy of a satellite system with many vibration sources and complex transfer paths, it is necessary to determine the main transfer path of vibration. In this study, a path identification method is proposed and applied to the transfer system from the momentum wheel to the camera mount. First, the observer/Kalman filter identification (OKID) algorithm is used to acquire the state-space equation of each path subsystem. Then, the subsystem order is obtained based on the slope of the singular entropy increment. In the next phase, combined with the measured disturbance force of the momentum wheel, the displacement response of the target point is predicted. Finally, the dominant transfer path of vibration is achieved by calculating the vibration contribution of each path to the response point. The results indicate that the dominant transfer path is the axial path of the horizontal momentum wheel, which contributes to the vibration of the camera mount at most. Effective vibration reduction measures should be taken to this path to suppress the vibration signal. In comparing the identified displacement response with the finite element response of the camera mount under different noise conditions, the correlation coefficients are >0.85, which proves the accuracy and anti-noise capability of the identification method.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3