Smith predictor compensation and fuzzy incremental control for delay of space docking hardware-in-the-loop simulation system

Author:

Yu Simiao1ORCID,Han Junwei2,Zhang Wenming3,Xu Dongmei4

Affiliation:

1. Xi’an University of Architecture and Technology, Xi'an, China

2. Harbin Institute of Technology, Harbin, China

3. China Academy of Space Technology, Beijing, China

4. Xi’an University of Science and Technology, Xi'an, China

Abstract

Hardware-in-the-loop (HIL) simulation for space manipulator docking is an important means to simulate real space docking on the ground. The HIL simulation system in this paper utilizes the contact force measured by force sensor to calculate the dynamics of the mechanisms, and the docking process is simulated by the parallel robot. The measurement delay of force sensor and dynamic response delay of the parallel robot are inevitable, which not only affect the accuracy of simulation but also lead to the instability of the HIL simulation system. The traditional first-order phase compensation is the most commonly used force sensor compensator; but when the force changes with a high frequency, its compensation effect becomes bad, which will lead to the divergence of the HIL simulation system. Most control methods of the parallel robot are based on the model of the parallel robot, but the forces of the parallel robot are complex during the docking process, and the system parameters, motion frequency, and dynamic response characteristics are time-varying; thus, it is difficult to design the controller based on the model. In this paper, the Smith predictor compensation (SPC) method and fuzzy incremental control (FIC) method are utilized to decrease the delays of the force sensor and parallel robot, respectively. The effectiveness of the Smith predictor compensation and fuzzy incremental control method in reducing the delay of the HIL system and in improving the stability of the system is verified by simulation and experiment; compared with the traditional first-order phase compensation and proportional-integral-differential control methods, the advantages of the proposed methods are illustrated. The research in this paper provides an important technical means for accurately simulating the real docking process.

Funder

Shaanxi Natural Science Basic Research Program

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Shaanxi Education Department General Special Scientific Research Plan

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3