Optimal transfer orbit design of spacecraft with finite thrust based on Legendre pseudospectral method

Author:

Tu Lianghui1ORCID,Wang Yuhao1,Yan Chao1,Yang Yang1

Affiliation:

1. School of Aircraft Engineering, Nanchang Hangkong University, Nanchang, People’s Republic of China

Abstract

This article explores the application of the Legendre pseudospectral method to spacecraft orbital transfer with finite thrust optimization problem. Firstly, the model of the orbital transfer optimization control problem was established, while equations of motion were simplified based on some hypotheses. The performance was optimized to minimize the cumulative fuel consumption. The control variable was the thrust attack angle, and terminal state variable constraints included path angle, altitude, and velocity constraints. Then, the optimal control problem was transformed into a nonlinear programming problem (NLP) using the Legendre pseudospectral method. The dynamic optimization problem was transformed into a static parameter optimization problem. The state variables and control variables were selected as the optimal parameters at all collocation nodes. Lastly, the parameter optimization problem was solved using the SNOPT (Sparse Nonlinear Optimizer) software package. The SNOPT software package shows high convergence for a nonlinear programming problem. During the simulation, it was noted that the Legendre pseudospectral method is not sensitive to orbital transfer initial conditions. It was also observed that the optimal solutions of the orbital transfer optimization problem are fairly good in robustness. Therefore, the Legendre pseudospectral method is a viable approach to the spacecraft orbital transfer with a finite thrust optimization problem. The orbit optimization method proposed in this paper can also provide reference and guidance for solving other interplanetary orbital transfer optimization problems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3