Experimental research on operation performance and acoustic behavior of two-phase dual-tube pulse detonation engine

Author:

Huang Xiaolong12ORCID,Li Ning12ORCID,Weng Chunsheng12ORCID,Kang Yang12

Affiliation:

1. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, China

2. Ning Li, National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, No. 200, Xiao Lingwei Road, Nanjing 210094, China.

Abstract

In order to research the operation synchronous of dual-tube pulse detonation engine, the operation performance and acoustic behavior of dual-tube pulse detonation engine under different fill fractions are studied experimentally. The results show that the instability of deflagration to detonation transition is the main reason for the non-synchronous work of the two tubes. With the increase of fill fraction, the detonation sound pressure increases gradually. In the region near the tube exit, the pressure and velocity of the shock wave attenuate rapidly, and the attenuation speed gradually slows down while the propagation distance increases. The time interval of detonation waves arriving at the tube exit of the two tubes can significantly affect the peak sound pressure and the duration of the sound wave outside the tube. With the increase of time interval, the peak sound pressure decreases and the total duration as well as the duration of the positive pressure increase. The synchronization of the working process of the dual-tube pulse detonation engine can be diagnosed by analyzing the pressure and duration of the sound wave outside the tube. The research results in this paper have certain reference significance for improving the synchronous of multi-tube pulse detonation engine and will be useful for the application of multi-tube pulse detonation engine in aircraft power system.

Funder

China Scholarship Council

Young Scientists Fund of the Natural Science Foundation of Jiangsu Province

Fundamental Research Funds of National Key Laboratory of Transient Physics

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3