Robust L∞ convex optimisation for UAVs cooperative motion estimation

Author:

Boulekchour Mohammed1,Aouf Nabil1,Richardson Mark1

Affiliation:

1. Centre for Electronic Warfare, Cranfield University, Shrivenham, UK

Abstract

In this paper, a system for real-time cooperative monocular visual motion estimation with multiple unmanned aerial vehicles is proposed. Distributing the system across a network of vehicles allows for efficient processing in terms of both computational time and estimation accuracy. The resulting global cooperative motion estimation employs state-of-the-art approaches for optimisation, individual motion estimation and registration. Three-view geometry algorithms are developed within a convex optimisation framework on-board the monocular vision systems of each vehicle. In the presented novel distributed cooperative strategy a visual loop-closure module is deployed to detect any simultaneously overlapping fields of view of two or more of the vehicles. A positive feedback from the latter module triggers the collaborative motion estimation algorithm between any vehicles involved in this loop-closure. This scenario creates a flexible stereo set-up which jointly optimises the motion estimates of all vehicles in the cooperative scheme. Prior to that, vehicle-to-vehicle relative pose estimates are recovered with a novel robust registration solution in a global optimisation framework. Furthermore, as a complementary solution, a robust non-linear Hfilter is designed to fuse measurements from the vehicles’ on-board inertial sensors with the visual estimates. The proposed cooperative navigation solution has been validated on real-world data, using two unmanned aerial vehicles equipped with monocular vision systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bounded distance control for Multi-UAV formation safety and preservation in target-tracking applications;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3