Self-Practice Program for Beating-Heart Minimally Invasive Coronary Anastomosis Using a Homemade Low-Fidelity Simulator: A Proof of Concept

Author:

Azmi Muhammad Ibrahim1ORCID,Nair Ashvin Krishna1ORCID,Hashim Shahrul Amry1

Affiliation:

1. Cardiothoracic Division, Pusat Perubatan Universiti Malaya, Kuala Lumpur, Malaysia

Abstract

Objective: We evaluated the effectiveness of a consistent and structured self-practice coronary anastomosis program using a homemade low-fidelity beating-heart simulator. Methods: An intermediary trainee was subjected to an 8-week structured self-practice program. The program was divided into 2 parts of nonbeating and beating practices with a minimum number of timed anastomoses. Each part was followed by an assessment using an objective skills assessment tool score. The beating-heart simulator was built using motorized toy blocks connected wirelessly to a smartphone application. This was coded to enable rate selection. A junior consultant was compared to the subject at the end of the program. Both were tasked to perform 1 coronary anastomosis for both off-pump coronary artery bypass (OPCAB) and minimally invasive CAB (MICS) setup. The primary outcomes were anastomotic time and score compared with the junior consultant. Secondary outcomes were progression of anastomotic time and score throughout the program. Results: Overall performance of the studied subject approached the performance of the junior consultant in terms of time (OPCAB, 489 vs 605 s; MICS, 712 vs 652 s) and scores (OPCAB, 21 vs 20.7; MICS, 19 vs 20.6). There were inverse correlations between anastomosis time and number of practices for both nonbeating and beating anastomoses. Overall improvement was observed in terms of assessment scoring by 26.6%. Conclusions: A structured self-practice program using an affordable and accessible simulator was able to help trainees overcome the MICS anastomosis learning curve quicker when introduced earlier. This may encourage earlier adoption of MICS among surgeons.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3