A Novel Quantitative Ex Vivo Model of Functional Mitral Regurgitation

Author:

Pasrija Chetan1,Quinn Rachael1,Ghoreishi Mehrdad1,Eperjesi Thomas2,Lai Eric2,Gorman Robert C.2,Gorman Joseph H.2,Gorman Robert C.2,Pouch Alison2,Cortez Felino V.1,D'Ambra Michael N1,Gammie James S.1

Affiliation:

1. Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, USA

2. Department of Surgery, University of Pennsylvania, PA, USA

Abstract

Objective Durability of mitral valve (MV) repair for functional mitral regurgitation (FMR) remains suboptimal. We sought to create a highly reproducible, quantitative ex vivo model of FMR that functions as a platform to test novel repair techniques. Methods Fresh swine hearts ( n = 10) were pressurized with air to a left ventricular pressure of 120 mmHg. The left atrium was excised and the altered geometry of FMR was created by radially dilating the annulus and displacing the papillary muscle tips apically and radially in a calibrated fashion. This was continued in a graduated fashion until coaptation was exhausted. Imaging of the MV was performed with a 3-dimensional (3D) structured-light scanner, which records 3D structure, texture, and color. The model was validated using transesophageal echocardiography in patients with normal MVs and severe FMR. Results Compared to controls, the anteroposterior diameter in the FMR state increased 32% and the annular area increased 35% ( P < 0.001). While the anterior annular circumference remained fixed, the posterior circumference increased by 20% ( P = 0.026). The annulus became more planar and the tenting height increased 56% (9 to 14 mm, P < 0.001). The median coaptation depth significantly decreased (anterior leaflet: 5 vs 2 mm; posterior leaflet: 7 vs 3 mm, P < 0.001). The ex vivo normal and FMR models had similar characteristics as clinical controls and patients with severe FMR. Conclusions This novel quantitative ex vivo model provides a simple, reproducible, and inexpensive benchtop representation of FMR that mimics the systolic valvular changes of patients with FMR.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Surgery,Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3