Improved Statistical Classification Methods in Computerized Psychiatric Diagnosis

Author:

Vlachonikolis Ioannis G.,Karras Dimitris A.,Hatzakis Manolis J.,Paritsis Nicholas

Abstract

Background. Mainstream psychiatric diagnosis involves mainly sequential, expert-system-derived, logical decision rules. Among the few statistical classification methods that have been sporadically evaluated are Bayes, k-nearest neighbor, and discriminant analysis classifiers. Methods. A statistical classification method based on artificial neural networks (ANN) with task-specific constrained architectures was applied to a sample of 796 clinical interviews, where the symptom evaluation and the diagnostic judgments were made using the Psychiatric State Examination (PSE) system. The proposed constrained ANN (CANN) method was compared with other statistical classification methods. Results. CANN was found to be superior to all other considered methods, having an overall "correct" classification rate of 80% when applied to test data. Similarly, the concordance coefficients of agreement with the PSE diagnostic categories were all very high. Among the other used methods, discriminant analysis had slightly inferior performance but better generalization capability. Conclusions. The proposed CANN method has a definite utility in psychiatric diagnosis and requires further evaluation, perhaps alongside other standard classification systems and/or with larger samples. Key words: computer-aided psychiatric diagnosis; artificial neural networks ; expert systems; classification methods. (Med Decis Making 2000;20:95-103)

Publisher

SAGE Publications

Subject

Health Policy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3