An Efficient Method for Computing Expected Value of Sample Information for Survival Data from an Ongoing Trial

Author:

Vervaart Mathyn12ORCID,Strong Mark3ORCID,Claxton Karl P.45,Welton Nicky J.6,Wisløff Torbjørn78ORCID,Aas Eline1

Affiliation:

1. Department of Health Management and Health Economics, University of Oslo, Oslo, Norway

2. Norwegian Medicines Agency, Oslo, Norway

3. School of Health and Related Research, University of Sheffield, Sheffield, UK

4. Centre for Health Economics, University of York, York, UK

5. Department of Economics and Related Studies, University of York, York, UK

6. Population Health Sciences, University of Bristol, Bristol, UK

7. Department of Community Medicine, UiT The Arctic University of Norway, Oslo, Norway

8. Norwegian Institute of Public Health, Oslo, Norway

Abstract

Background Decisions about new health technologies are increasingly being made while trials are still in an early stage, which may result in substantial uncertainty around key decision drivers such as estimates of life expectancy and time to disease progression. Additional data collection can reduce uncertainty, and its value can be quantified by computing the expected value of sample information (EVSI), which has typically been described in the context of designing a future trial. In this article, we develop new methods for computing the EVSI of extending an existing trial’s follow-up, first for an assumed survival model and then extending to capture uncertainty about the true survival model. Methods We developed a nested Markov Chain Monte Carlo procedure and a nonparametric regression-based method. We compared the methods by computing single-model and model-averaged EVSI for collecting additional follow-up data in 2 synthetic case studies. Results There was good agreement between the 2 methods. The regression-based method was fast and straightforward to implement, and scales easily included any number of candidate survival models in the model uncertainty case. The nested Monte Carlo procedure, on the other hand, was extremely computationally demanding when we included model uncertainty. Conclusions We present a straightforward regression-based method for computing the EVSI of extending an existing trial’s follow-up, both where a single known survival model is assumed and where we are uncertain about the true survival model. EVSI for ongoing trials can help decision makers determine whether early patient access to a new technology can be justified on the basis of the current evidence or whether more mature evidence is needed. Highlights Decisions about new health technologies are increasingly being made while trials are still in an early stage, which may result in substantial uncertainty around key decision drivers such as estimates of life-expectancy and time to disease progression. Additional data collection can reduce uncertainty, and its value can be quantified by computing the expected value of sample information (EVSI), which has typically been described in the context of designing a future trial. In this article, we have developed new methods for computing the EVSI of extending a trial’s follow-up, both where a single known survival model is assumed and where we are uncertain about the true survival model. We extend a previously described nonparametric regression-based method for computing EVSI, which we demonstrate in synthetic case studies is fast, straightforward to implement, and scales easily to include any number of candidate survival models in the EVSI calculations. The EVSI methods that we present in this article can quantify the need for collecting additional follow-up data before making an adoption decision given any decision-making context.

Funder

Norges Forskningsråd

Publisher

SAGE Publications

Subject

Health Policy

Reference52 articles.

1. A Review of Clinical Trials With an Adaptive Design and Health Economic Analysis

2. European Medicines Agency. Adaptive pathways. 2018. Available from: https://www.ema.europa.eu/en/human-regulatory/research-development/adaptive-pathways. Accessed October 19, 2020.

3. European Medicines Agency. Conditional marketing authorisation. 2018. Available from: https://www.ema.europa.eu/en/human-regulatory/marketing-authorisation/conditional-marketing-authorisation. Accessed October 19, 2020.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3