An Evaluation of Survival Curve Extrapolation Techniques Using Long-Term Observational Cancer Data

Author:

Vickers Adrian1ORCID

Affiliation:

1. RTI Health Solutions, Manchester, Greater Manchester, UK

Abstract

Objectives. Uncertainty in survival prediction beyond trial follow-up is highly influential in cost-effectiveness analyses of oncology products. This research provides an empirical evaluation of the accuracy of alternative methods and recommendations for their implementation. Methods. Mature (15-year) survival data were reconstructed from a published database study for “no treatment,” radiotherapy, surgery plus radiotherapy, and surgery in early stage non–small cell lung cancer in an elderly patient population. Censored data sets were created from these data to simulate immature trial data (for 1- to 10-year follow-up). A second data set with mature (9-year) survival data for no treatment was used to extrapolate the predictions from models fitted to the first data set. Six methodological approaches were used to fit models to the simulated data and extrapolate beyond trial follow-up. Model performance was evaluated by comparing the relative difference in mean survival estimates and the absolute error in the difference in mean survival v. the control with those from the original mature survival data set. Results. Model performance depended on the treatment comparison scenario. All models performed reasonably well when there was a small short-term treatment effect, with the Bayesian model coping better with shorter follow-up times. However, in other scenarios, the most flexible Bayesian model that could be estimated in practice appeared to fit the data less well than the models that used the external data separately. Where there was a large treatment effect (hazard ratio = 0.4), models that used external data separately performed best. Conclusions. Models that directly use mature external data can improve the accuracy of survival predictions. Recommendations on modeling strategies are made for different treatment benefit scenarios.

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3