Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information

Author:

Fang Wei1ORCID,Wang Zhenru1,Giles Michael B.1,Jackson Chris H.2,Welton Nicky J.3,Andrieu Christophe4ORCID,Thom Howard3ORCID

Affiliation:

1. Mathematical Institute, University of Oxford, Oxford, Oxfordshire, UK

2. MRC Biostatistics Unit, University of Cambridge, Cambridge, Cambridgeshire, UK

3. Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK

4. School of Mathematics, University of Bristol, Bristol, UK

Abstract

The expected value of partial perfect information (EVPPI) provides an upper bound on the value of collecting further evidence on a set of inputs to a cost-effectiveness decision model. Standard Monte Carlo estimation of EVPPI is computationally expensive as it requires nested simulation. Alternatives based on regression approximations to the model have been developed but are not practicable when the number of uncertain parameters of interest is large and when parameter estimates are highly correlated. The error associated with the regression approximation is difficult to determine, while MC allows the bias and precision to be controlled. In this article, we explore the potential of quasi Monte Carlo (QMC) and multilevel Monte Carlo (MLMC) estimation to reduce the computational cost of estimating EVPPI by reducing the variance compared with MC while preserving accuracy. We also develop methods to apply QMC and MLMC to EVPPI, addressing particular challenges that arise where Markov chain Monte Carlo (MCMC) has been used to estimate input parameter distributions. We illustrate the methods using 2 examples: a simplified decision tree model for treatments for depression and a complex Markov model for treatments to prevent stroke in atrial fibrillation, both of which use MCMC inputs. We compare the performance of QMC and MLMC with MC and the approximation techniques of generalized additive model (GAM) regression, Gaussian process (GP) regression, and integrated nested Laplace approximations (INLA-GP). We found QMC and MLMC to offer substantial computational savings when parameter sets are large and correlated and when the EVPPI is large. We also found that GP and INLA-GP were biased in those situations, whereas GAM cannot estimate EVPPI for large parameter sets.

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3