Affiliation:
1. Department of Management Science and Engineering, Stanford University, Stanford, CA, USA
Abstract
Background Personalizing medical treatments based on patient-specific risks and preferences can improve patient health. However, models to support personalized treatment decisions are often complex and difficult to interpret, limiting their clinical application. Methods We present a new method, using machine learning to create meta-models, for simplifying complex models for personalizing medical treatment decisions. We consider simple interpretable models, interpretable ensemble models, and noninterpretable ensemble models. We use variable selection with a penalty for patient-specific risks and/or preferences that are difficult, risky, or costly to obtain. We interpret the meta-models to the extent permitted by their model architectures. We illustrate our method by applying it to simplify a previously developed model for personalized selection of antipsychotic drugs for patients with schizophrenia. Results The best simplified interpretable, interpretable ensemble, and noninterpretable ensemble models contained at most half the number of patient-specific risks and preferences compared with the original model. The simplified models achieved 60.5% (95% credible interval [crI]: 55.2–65.4), 60.8% (95% crI: 55.5–65.7), and 83.8% (95% crI: 80.8–86.6), respectively, of the net health benefit of the original model (quality-adjusted life-years gained). Important variables in all models were similar and made intuitive sense. Computation time for the meta-models was orders of magnitude less than for the original model. Limitations The simplified models share the limitations of the original model (e.g., potential biases). Conclusions Our meta-modeling method is disease- and model- agnostic and can be used to simplify complex models for personalization, allowing for variable selection in addition to improved model interpretability and computational performance. Simplified models may be more likely to be adopted in clinical settings and can help improve equity in patient outcomes.
Funder
national science foundation
National Institute on Drug Abuse
Stanford University Kaseberg Doolan Graduate Fellowship
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献