Large-Sample Bayesian Posterior Distributions for Probabilistic Sensitivity Analysis

Author:

Hazen Gordon B.1,Huang Min2

Affiliation:

1. IEMS Department, Northwestern University, Evanston, IL, IEMS Dept, McCormick School, Evanston, IL,

2. IEMS Department, Northwestern University, Evanston, IL

Abstract

In probabilistic sensitivity analyses, analysts assign probability distributions to uncertain model parameters and use Monte Carlo simulation to estimate the sensitivity of model results to parameter uncertainty. The authors present Bayesian methods for constructing large-sample approximate posterior distributions for probabilities, rates, and relative effect parameters, for both controlled and uncontrolled studies, and discuss how to use these posterior distributions in a probabilistic sensitivity analysis. These results draw on and extend procedures from the literature on large-sample Bayesian posterior distributions and Bayesian random effects meta-analysis. They improve on standard approaches to probabilistic sensitivity analysis by allowing a proper accounting for heterogeneity across studies as well as dependence between control and treatment parameters, while still being simple enough to be carried out on a spreadsheet. The authors apply these methods to conduct a probabilistic sensitivity analysis for a recently published analysis of zidovudine prophylaxis following rapid HIV testing in labor to prevent vertical HIV transmission in pregnant women.

Publisher

SAGE Publications

Subject

Health Policy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some Health States Are Better Than Others;Medical Decision Making;2016-07-10

2. The Economic Attractiveness of Targeted Radiotherapy: Value for Money?;Monoclonal Antibody and Peptide-Targeted Radiotherapy of Cancer;2010-07-15

3. Posterior Progress;Medical Decision Making;2006-09

4. Bayesian Statistics;Medical Decision Making;2006-09

5. How do physicians make a decision?;11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3