Estimating Breast Cancer Survival by Molecular Subtype in the Absence of Screening and Adjuvant Treatment

Author:

Munoz Diego F.1,Plevritis Sylvia K.1

Affiliation:

1. Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA

Abstract

Background. As molecular subtyping of breast cancer influences clinical management, the evaluation of screening and adjuvant treatment interventions at the population level needs to account for molecular subtyping. Performing such analyses are challenging because molecular subtype-specific, long-term outcomes are not readily accessible; these markers were not historically recorded in tumor registries. We present a modeling approach to estimate historical survival outcomes by estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) status. Method. Our approach leverages a simulation model of breast cancer outcomes and integrates data from two sources: the Surveillance Epidemiology and End Results (SEER) databases and the Breast Cancer Surveillance Consortium (BCSC). We not only produce ER- and HER2-specific estimates of breast cancer survival in the absence of screening and adjuvant treatment but we also estimate mean tumor volume doubling time (TVDT) and mean mammographic detection threshold by ER/HER2-status. Results. In general, we found that tumors with ER-negative and HER2-positive status are associated with more aggressive growth, have lower TVDTs, are harder to detect by mammography, and have worse survival outcomes in the absence of screening and adjuvant treatment. Our estimates have been used as inputs into model-based analyses that evaluate the effects of screening and adjuvant treatment interventions on population outcomes by ER and HER2 status developed by the Cancer Intervention and Surveillance Modeling Network (CISNET) Breast Cancer Working Group. In addition, our estimates enable a re-assessment of historical trends in breast cancer incidence and mortality in terms of contemporary molecular tumor characteristics. Conclusion. Our approach can be generalized beyond breast cancer and to more complex molecular profiles.

Funder

National Cancer Institute

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3