Continuously Rethinking the Definition of Influenza for Surveillance Systems

Author:

Alemi Farrokh1234,Atherton Martin J.1234,Pattie David C.1234,Torii Manabu1234

Affiliation:

1. District of Columbia Veteran Administration Medical Center, Washington, DC (FA)

2. SciMetrika, LLC, Falls Church, VA (MJA)

3. Planned Systems International, Inc., Falls Church, VA (DCP)

4. Imaging Science and Information Systems Center, Washington, DC (MT)

Abstract

Objective. In the Electronic Surveillance System for the Early Notification of Community-based Epidemics (ESSENCE), influenza was originally defined by a list of 29 and later by a list of 12 diagnosis codes. This article describes a dependent Bayesian procedure designed to improve the ESSENCE system and exploit multiple sources of information without being biased by redundancy. Methods. We obtained 13,096 cases within the Armed Forces Health Longitudinal Technological Application electronic medical records that included an influenza laboratory test. A Dependent Bayesian Expert System (D-BESt) was used to predict influenza from diagnoses, symptoms, reason for visit, temperature, month of visit, category of enrollment, and demographics. For each case, D-BESt sequentially selects the most discriminating piece of information, calculates its likelihood ratio conditioned on previously selected information, and updates the case’s probability of influenza. Results. When the analysis was limited to definitions based on diagnoses and was applied to a sample of patients for whom laboratory tests had been ordered, the areas under the receiver operating characteristic curve (AUCs) for the previous (29-diagnosis) and current (12-diagnosis) ESSENCE lists and the D-BESt algorithm were, respectively, 0.47, 0.36, and 0.77. Including other sources of information further improved the AUC for D-BESt to 0.79. At the best cutoff point for D-BESt, where the receiver operating characteristic curve for D-BESt is farthest from the diagonal line, the D-BESt algorithm correctly classified 84% of cases (specificity = 88%, sensitivity = 62%). In comparison, the current ESSENCE approach of using a list of 12 diagnoses correctly classified only 31% of this sample of cases (specificity = 29%, sensitivity = 42%). Conclusions. False alarms in ESSENCE surveillance systems can be reduced if a probabilistic dynamic learning system is used.

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3