Improving the Estimation of Subgroup Effects for Clinical Trial Participants with Multimorbidity by Incorporating Drug Class-Level Information in Bayesian Hierarchical Models: A Simulation Study

Author:

Hannigan Laurie J.123ORCID,Phillippo David M.2ORCID,Hanlon Peter3ORCID,Moss Laura45,Butterly Elaine W.3,Hawkins Neil3,Dias Sofia6ORCID,Welton Nicky J.2,McAllister David A.3ORCID

Affiliation:

1. Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway

2. Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK

3. Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK

4. NHS Greater Glasgow & Clyde, UK

5. School of Medicine, University of Glasgow, Glasgow, UK

6. Centre for Reviews and Dissemination, University of York, York, North Yorkshire, UK

Abstract

Background There is limited guidance for using common drug therapies in the context of multimorbidity. In part, this is because their effectiveness for patients with specific comorbidities cannot easily be established using subgroup analyses in clinical trials. Here, we use simulations to explore the feasibility and implications of concurrently estimating effects of related drug treatments in patients with multimorbidity by partially pooling subgroup efficacy estimates across trials. Methods We performed simulations based on the characteristics of 161 real clinical trials of noninsulin glucose-lowering drugs for diabetes, estimating subgroup effects for patients with a hypothetical comorbidity across related trials in different scenarios using Bayesian hierarchical generalized linear models. We structured models according to an established ontology—the World Health Organization Anatomic Chemical Therapeutic Classifications—allowing us to nest all trials within drugs and all drugs within anatomic chemical therapeutic classes, with effects partially pooled at each level of the hierarchy. In a range of scenarios, we compared the performance of this model to random effects meta-analyses of all drugs individually. Results Hierarchical, ontology-based Bayesian models were unbiased and accurately recovered simulated comorbidity-drug interactions. Compared with single-drug meta-analyses, they offered a relative increase in precision of up to 250% in some scenarios because of information sharing across the hierarchy. Because of the relative precision of the approaches, a large proportion of small subgroup effects was detectable only using the hierarchical model. Conclusions By assuming that similar drugs may have similar subgroup effects, Bayesian hierarchical models based on structures defined by existing ontologies can be used to improve the precision of treatment efficacy estimates in patients with multimorbidity, with potential implications for clinical decision making.

Funder

Helse Sør-Øst RHF

Wellcome Trust

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3