Evaluating and Modeling Neighborhood Diversity and Health Using Electronic Health Records

Author:

Dalton Jarrod E.12ORCID,Pfoh Elizabeth R.3,Dawson Neal V.4,Mourany Lyla2,Becerril Alissa1,Gunzler Douglas D.5,Berg Kristen A.5,Einstadter Douglas5,Krieger Nikolas I.2ORCID,Perzynski Adam T.5

Affiliation:

1. Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA

2. Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA

3. Center for Value-Based Care Research, Medicine Institute, Cleveland Clinic, Cleveland, OH, USA

4. Department of Population and Quantitative Health Sciences, Case Western Reserve University, Parma Heights, OH, USA

5. Center for Healthcare Research and Policy, Case Western Reserve University at MetroHealth

Abstract

Background Electronic health records (EHRs) provide researchers with abundant sample sizes, detailed clinical data, and other advantages for performing high-quality observational health research on diverse populations. We review and demonstrate strategies for the design and analysis of cohort studies on neighborhood diversity and health, including evaluation of the effects of race, ethnicity, and neighborhood socioeconomic position on disease prevalence and health outcomes, using localized EHR data. Methods Design strategies include integrating and harmonizing EHR data across multiple local health systems and defining the population(s) of interest and cohort extraction procedures for a given analysis based on the goal(s) of the study. Analysis strategies address inferential goals, including the mechanistic study of social risks, statistical adjustment for differences in distributions of social and neighborhood-level characteristics between available EHR data and the underlying local population, and inference on individual neighborhoods. We provide analyses of local variation in mortality rates within Cuyahoga County, Ohio. Results When the goal of the analysis is to adjust EHR samples to be more representative of local populations, sampling and weighting are effective. Causal mediation analysis can inform effects of racism (through racial residential segregation) on health outcomes. Spatial analysis is appealing for large-scale EHR data as a means for studying heterogeneity among neighborhoods even at a given level of overall neighborhood disadvantage. Conclusions The methods described are a starting point for robust EHR-derived cohort analysis of diverse populations. The methods offer opportunities for researchers to pursue detailed analyses of current and historical underlying circumstances of social policy and inequality. Investigators can employ combinations of these methods to achieve greater robustness of results. Highlights EHR data are an abundant resource for studying neighborhood diversity and health. When using EHR data for these studies, careful consideration of the goals of the study should be considered in determining cohort specifications and analytic approaches. Causal mediation analysis, stratification, and spatial analysis are effective methods for characterizing social mechanisms and heterogeneity across localized populations.

Funder

National Institute on Aging

Publisher

SAGE Publications

Subject

Health Policy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3