Validating the Assumptions of Population Adjustment: Application of Multilevel Network Meta-regression to a Network of Treatments for Plaque Psoriasis

Author:

Phillippo David M.1ORCID,Dias Sofia12ORCID,Ades A. E.1,Belger Mark3,Brnabic Alan4,Saure Daniel5,Schymura Yves5,Welton Nicky J.1

Affiliation:

1. University of Bristol, Bristol, UK

2. University of York, York, North Yorkshire, UK

3. Lilly UK, Windlesham, Surrey, UK

4. Eli Lilly Australia Pty. Limited, Sydney, NSW, Australia

5. Lilly Deutschland GmbH, Bad Homburg, Hessen, Germany

Abstract

Background Network meta-analysis (NMA) and indirect comparisons combine aggregate data (AgD) from multiple studies on treatments of interest but may give biased estimates if study populations differ. Population adjustment methods such as multilevel network meta-regression (ML-NMR) aim to reduce bias by adjusting for differences in study populations using individual patient data (IPD) from 1 or more studies under the conditional constancy assumption. A shared effect modifier assumption may also be necessary for identifiability. This article aims to demonstrate how the assumptions made by ML-NMR can be assessed in practice to obtain reliable treatment effect estimates in a target population. Methods We apply ML-NMR to a network of evidence on treatments for plaque psoriasis with a mix of IPD and AgD trials reporting ordered categorical outcomes. Relative treatment effects are estimated for each trial population and for 3 external target populations represented by a registry and 2 cohort studies. We examine residual heterogeneity and inconsistency and relax the shared effect modifier assumption for each covariate in turn. Results Estimated population-average treatment effects were similar across study populations, as differences in the distributions of effect modifiers were small. Better fit was achieved with ML-NMR than with NMA, and uncertainty was reduced by explaining within- and between-study variation. We found little evidence that the conditional constancy or shared effect modifier assumptions were invalid. Conclusions ML-NMR extends the NMA framework and addresses issues with previous population adjustment approaches. It coherently synthesizes evidence from IPD and AgD studies in networks of any size while avoiding aggregation bias and noncollapsibility bias, allows for key assumptions to be assessed or relaxed, and can produce estimates relevant to a target population for decision-making. Highlights Multilevel network meta-regression (ML-NMR) extends the network meta-analysis framework to synthesize evidence from networks of studies providing individual patient data or aggregate data while adjusting for differences in effect modifiers between studies (population adjustment). We apply ML-NMR to a network of treatments for plaque psoriasis with ordered categorical outcomes. We demonstrate for the first time how ML-NMR allows key assumptions to be assessed. We check for violations of conditional constancy of relative effects (such as unobserved effect modifiers) through residual heterogeneity and inconsistency and the shared effect modifier assumption by relaxing this for each covariate in turn. Crucially for decision making, population-adjusted treatment effects can be produced in any relevant target population. We produce population-average estimates for 3 external target populations, represented by the PsoBest registry and the PROSPECT and Chiricozzi 2019 cohort studies.

Funder

Medical Research Council

Publisher

SAGE Publications

Subject

Health Policy

Reference44 articles.

1. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials

2. BORROWING STRENGTH FROM EXTERNAL TRIALS IN A META-ANALYSIS

3. Combination of direct and indirect evidence in mixed treatment comparisons

4. Dias S, Welton NJ, Sutton AJ, Ades AE. NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for Pair-wise and Network Meta-analysis of Randomised Controlled Trials. Technical report. London: National Institute for Health and Care Excellence, 2011. Available from:http://www.nicedsu.org.uk

5. Meta-analysis of individual- and aggregate-level data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3