NFATc2-dependent epigenetic downregulation of the TSC2/Beclin-1 pathway is involved in neuropathic pain induced by oxaliplatin

Author:

Liu Meng1,Mai Jing-Wen2,Luo De-Xing2,Liu Guan-Xi34,Xu Ting5,Xin Wen-Jun5,Lin Su-Yan6ORCID,Li Zhen-Yu5ORCID

Affiliation:

1. Department of Anesthesia and Pain Medicine, Guangzhou First People’s Hospital, Guangzhou, China

2. Department of Anesthesiology, Huizhou Central People’s Hospital, Huizhou, China

3. The First School of Clinical Medicine, Southern Medical University, Guangzhou, China

4. The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China

5. Department of Emergency Medicine, The First Affiliated Hospital of Sun Yat-Sen University and Zhongshan Medical School, Sun Yat-Sen University, China

6. Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

Abstract

Neuropathic pain is a common dose-limiting side effect of oxaliplatin, which hampers the effective treatment of tumors. Here, we found that upregulation of transcription factor NFATc2 decreased the expression of Beclin-1, a critical molecule in autophagy, in the spinal dorsal horn, and contributed to neuropathic pain following oxaliplatin treatment. Meanwhile, manipulating autophagy levels by intrathecal injection of rapamycin (RAPA) or 3-methyladenine (3-MA) differentially altered mechanical allodynia in oxaliplatin-treated or naïve rats. Utilizing chromatin immunoprecipitation-sequencing (ChIP-seq) assay combined with bioinformatics analysis, we found that NFATc2 negatively regulated the transcription of tuberous sclerosis complex protein 2 (TSC2), which contributed to the oxaliplatin-induced Beclin-1 downregulation. Further assays revealed that NFATc2 regulated histone H4 acetylation and methylation in the TSC2 promoter site 1 in rats’ dorsal horns with oxaliplatin treatment. These results suggested that NFATc2 mediated the epigenetic downregulation of the TSC2/Beclin-1 autophagy pathway and contributed to oxaliplatin-induced mechanical allodynia, which provided a new therapeutic insight for chemotherapy-induced neuropathic pain.

Funder

China Postdoctoral Science Foundation

Guangzhou Science and Technology Plan Project

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Epigenetics of Neuropathic Pain: A Systematic Update;International Journal of Molecular Sciences;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3