Exercise training modulates glutamic acid decarboxylase-65/67 expression through TrkB signaling to ameliorate neuropathic pain in rats with spinal cord injury

Author:

Li Xiangzhe1ORCID,Wang Qinghua2,Ding Jie3,Wang Sheng1,Dong Chuanming4,Wu Qinfeng1

Affiliation:

1. Rehabilitation Medical Center, the Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, People’s Republic of China

2. Laboratory Animal Center, Nantong University, Nantong, Jiangsu, People’s Republic of China

3. Departments of Respiratory Care, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China

4. Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu, People’s Republic of China

Abstract

Neuropathic pain is one of the most frequently stated complications after spinal cord injury. In post-spinal cord injury, the decrease of gamma aminobutyric acid synthesis within the distal spinal cord is one of the main causes of neuropathic pain. The predominant research question of this study was whether exercise training may promote the expression of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67, which are key enzymes of gamma aminobutyric acid synthesis, within the distal spinal cord through tropomyosin-related kinase B signaling, as its synthesis assists to relieve neuropathic pain after spinal cord injury. Animal experiment was conducted, and all rats were allocated into five groups: Sham group, SCI/PBS group, SCI-TT/PBS group, SCI/tropomyosin-related kinase B-IgG group, and SCI-TT/tropomyosin-related kinase B-IgG group, and then T10 contusion SCI model was performed as well as the tropomyosin-related kinase B-IgG was used to block the tropomyosin-related kinase B activation. Mechanical withdrawal thresholds and thermal withdrawal latencies were used for assessing pain-related behaviors. Western blot analysis was used to detect the expression of brain-derived neurotrophic factor, tropomyosin-related kinase B, CREB, p-REB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord. Immunohistochemistry was used to analyze the distribution of CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord dorsal horn. The results showed that exercise training could significantly mitigate the mechanical allodynia and thermal hyperalgesia in post-spinal cord injury and increase the synthesis of brain-derived neurotrophic factor, tropomyosin-related kinase B, CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord. After the tropomyosin-related kinase B signaling was blocked, the analgesic effect of exercise training was inhibited, and in the SCI-TT/tropomyosin-related kinase B-IgG group, the synthesis of CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord were also significantly reduced compared with the SCI-TT/PBS group. This study shows that exercise training may increase the glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 expression within the spinal cord dorsal horn through the tropomyosin-related kinase B signaling, and this mechanism may play a vital role in relieving the neuropathic pain of rats caused by incomplete SCI.

Funder

National Natural Science Foundation of China

People's Livelihood Science and Technology Project of Suzhou Science and Technology Bureau

Application Research Project of Nantong city

Suzhou "Kejiaoxingwei" Youth Science and Technology Project

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3