miR-155-5p in the spinal cord regulates hypersensitivity in a rat model of bone cancer pain

Author:

He Qiuli12,Liu Lei3,Wang Yahui1,Xu Chengfei1,Xu Miao2,Fu Jie2,Zhu Jianjun2,Zhao Baoxia2,Ni Chaobo2,Yao Ming2ORCID,Lin Xuewu12,Ni Huadong2ORCID

Affiliation:

1. Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China

2. Department of Anesthesiology and Pain Research Center, The First Affiliated Hospital of Jiaxing University, Jiaxing, China

3. Department of Critical Care Medicine, The First Affiliated Hospital of Jiaxing University, Jiaxing, China

Abstract

Background Noncoding microRNAs have emerged as critical players of gene expression in the nervous system, where they contribute to regulating nervous disease. As stated in previous research, the miR-155-5p upregulation happens in the spinal cord at the nociceptive state. It was unclear if miR-155-5p is linked to bone cancer pain (BCP). Herein, we aimed at investigating the miR-155-5p functional regulatory function in BCP process and delineating the underlying mechanism. Methods The miRNA-155-5p levels and cellular distribution were determined by RNA sequencing, fluorescent in situ hybridization (FISH), and quantitative real-time PCR (qPCR). Immunoblotting, qPCR, dual-luciferase reporter gene assays, immunofluorescence, recombinant overexpression adeno-associated virus, small interfering RNA, intraspinal administration, and behavioral tests were utilized for exploring the downstream signaling pathway. Results The miR-155-5p high expression in spinal neurons contributes to BCP maintenance. The miR-155-5p blockage via the intrathecal injection of miR-155-5p antagomir alleviated the pain behavior; in contrast, upregulating miR-155-5p by agomir induced pain hypersensitivity. The miR-155-5p bounds directly to TCF4 mRNA’s 3′ UTR. BCP significantly reduced protein expression of TCF4 versus the Sham group. The miR-155-5p inhibition relieved the spinal TCF4 protein’s down-expression level, while miR-155-5p upregulation by miR-155-5p agomir intrathecal injection decreased TCF4 protein expression in naïve rats. Additionally, TCF4 overexpression in BCP rats could increase Kv1.1. Moreover, TCF4 knockdown inhibited Kv1.1 expression in BCP rats. Indeed, TCF4 and Kv1.1 were co-expressed in BCP spinal cord neurons. Conclusion The study findings stated the miR-155-5p pivotal role in regulating BCP by directly targeting TCF4 in spinal neurons and suggested that miR-155-5p could be a promising target in treating BCP.

Funder

Science and Technology Project of Jiaxing City

The Medical and Health General Research Program of Zhejiang Province

National Science Foundation for Young Scientists of China

The Natural Science Foundation of Zhejiang Province

The Key Medical Subjects Established by Zhejiang Province and Jiaxing City Jointly Pain Medicine

Key Discipline of Anesthesiology of Jiaxing City

Interdisciplinary Innovation team for Integrated traditional Chinese and Western Medicine in diagnosis and treatment of senile headache and Vertigo of Zhejiang Province

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation;Journal of Experimental & Clinical Cancer Research;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3