Wnt/β-catenin signaling regulates brain-derived neurotrophic factor release from spinal microglia to mediate HIV1 gp120-induced neuropathic pain

Author:

Zhou Xinxin1,Tao Lei2,Zhao Mengru1,Wu Shengjun3,Obeng Enoch1,Wang Dan1,Zhang Wenping1ORCID

Affiliation:

1. Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China

2. School of Life Sciences, East China Normal University, Shanghai, China

3. Clinical Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China

Abstract

HIV-associated neuropathic pain (HNP) is a common complication for AIDS patients. The pathological mechanism governing HNP has not been elucidated, and HNP has no effective analgesic treatment. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family related to the plasticity of the central nervous system. BDNF dysregulation is involved in many neurological diseases, including neuropathic pain. However, to the best of our knowledge, the role and mechanism of BDNF in HNP have not been elucidated. In this study, we explored this condition in an HNP mouse model induced by intrathecal injection of gp120. We found that Wnt3a and β-catenin expression levels increased in the spinal cord of HNP mice, consequently regulating the expression of BDNF and affecting hypersensitivity. In addition, the blockade of Wing-Int/β-catenin signaling, BDNF/TrkB or the BDNF/p75NTR pathway alleviated mechanical allodynia. BDNF immunoreactivity was colocalized with spinal microglial cells, which were activated in HNP mice. Inhibition of spinal microglial cell activation by minocycline relieved mechanical allodynia in HNP mice. This study helped to elucidate the role of the Wing-Int/β-catenin/BDNF signaling axis in HNP and may establish a foundation for further research investigating the Wing-Int/β-catenin/BDNF signaling axis as a target for HNP treatment.

Funder

Natural Science Foundation of Zhejiang Province

Public Technology Application Research Project from Science Technology Bureau of Zhejiang Province

Health Commission of Zhejiang Province

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3