Affiliation:
1. Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, USA
Abstract
Fibromyalgia (FM) is a chronic musculoskeletal pain disorder primarily diagnosed in women. Historically, clinical literature focusing on cytokines and immune cells has been inconsistent. However, recent key studies show several layers of immune system dysfunction in FM. Preclinically, studies of the immune system have focused on monocytes with little focus on other immune cells. Importantly, T-cells are implicated in the development and resolution of chronic pain states, particularly in females. Our previous work showed that monocytes from women with FM produced more interleukin 5 (IL-5) and systemic treatment of IL-5 reversed mechanical hypersensitivity in a preclinical model of FM. Typically, IL-5 is produced by TH2-cells, so in this study we assessed T-cell populations and cytokine production in female mice using the acid-induced chronic muscle pain model of FM before and after treatment with IL-5. Two unilateral injections of pH4.0 saline, five days apart, into the gastrocnemius muscle induce long-lasting widespread pain. We found that peripheral (blood) regulatory Thelper-cells (CD4+ FOXP3+) are downregulated in pH4.0-injected mice, with no differences in tissue (lymph nodes) or CD8+ T-cell populations. We tested the analgesic properties of IL-5 using a battery of spontaneous and evoked pain measures. Interestingly, IL-5 treatment induced place preference in mice previously injected with pH4.0 saline. Mice treated with IL-5 show limited changes in T-cell populations compared to controls, with a rescue in regulatory T-cells which positively correlates with improved mechanical hypersensitivity. The experiments in this study provide novel evidence that downregulation of regulatory T-cells play a role in chronic muscle pain pathology in the acidic saline model of FM and that IL-5 signaling is a promising target for future development of therapeutics.
Funder
National Institute of Neurological Disorders and Stroke
Rita Allen Foundation
University of Texas System
NIH
Subject
Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献