Methylene blue dose-dependently induces cutaneous inflammation and heat hyperalgesia in a novel rat model

Author:

Banik Ratan K1,Sia Twan12ORCID,Johns Malcolm E1,Tran Phu V3,Cheng Andrew Y4,Setty Sudarshan1,Simone Donald A5

Affiliation:

1. Department of Anesthesiology, School of Medicine, University of Minnesota, Minneapolis, MN, USA

2. Department of Medicine, Stanford University, School of Medicine, Stanford, CA, USA

3. Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN, USA

4. Department of Medicine, Harvard University School of Medicine, Boston, MA, USA

5. Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA

Abstract

Methylene blue (MB) has been shown to reduce mortality and morbidity in vasoplegic patients after cardiac surgery. Though MB is considered to be safe, extravasation of MB leading to cutaneous toxicity has been reported. In this study, we sought to characterize MB-induced cutaneous toxicity and investigate the underlying mechanisms. To induce MB-induced cutaneous toxicity, we injected 64 adult male Sprague-Dawley rates with 200 µL saline (vehicle) or 1%, 0.1%, or 0.01% MB in the plantar hind paws. Paw swelling, skin histologic changes, and heat and mechanical hyperalgesia were measured. Injection of 1%, but not 0.1% or 0.01% MB, produced significant paw swelling compared to saline. Injection of 1% MB produced heat hyperalgesia but not mechanical hyperalgesia. Pain behaviors were unchanged following injections of 0.1% or 0.01% MB. Global transcriptomic analysis by RNAseq identified 117 differentially expressed genes (111 upregulated, 6 downregulated). Ingenuity Pathway Analysis showed an increased quantity of leukocytes, increased lipids, and decreased apoptosis of myeloid cells and phagocytes with activation of IL-1β and Fos as the two major regulatory hubs. qPCR showed a 16-fold increase in IL-6 mRNA. Thus, using a novel rat model of MB-induced cutaneous toxicity, we show that infiltration of 1% MB into cutaneous tissue causes a dose-dependent pro-inflammatory response, highlighting potential roles of IL-6, IL-1β, and Fos. Thus, anesthesiologists should administer dilute MB intravenously through peripheral venous catheters. Higher concentrations of MB (1%) should be administered through a central venous catheter to minimize the risk of cutaneous toxicity.

Funder

Department of anesthesiology, University of Minnesota

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3