Affiliation:
1. Boise State University, ID, USA
2. University of Kansas, Lawrence, USA
Abstract
This study aims to identify important predictors of turnover intention and to characterize subgroups of U.S. federal employees at high risk for turnover intention. Data were drawn from the 2018 Federal Employee Viewpoint Survey (FEVS, unweighted N = 598,003), a nationally representative sample of U.S. federal employees. Machine learning Classification and Regression Tree (CART) analyses were conducted to predict turnover intention and accounted for sample weights. CART analyses identified six at-risk subgroups. Predictor importance scores showed job satisfaction was the strongest predictor of turnover intention, followed by satisfaction with organization, loyalty, accomplishment, involvement in decisions, likeness to job, satisfaction with promotion opportunities, skill development opportunities, organizational tenure, and pay satisfaction. Consequently, Human Resource (HR) departments should seek to implement comprehensive HR practices to enhance employees’ perceptions on job satisfaction, workplace environments and systems, and favorable organizational policies and supports and make tailored interventions for the at-risk subgroups.
Subject
Management of Technology and Innovation,Organizational Behavior and Human Resource Management,Strategy and Management,Public Administration
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献