Long-memory Modelling and Forecasting of the Returns and Volatility of Exchange-traded Notes (ETNs)

Author:

Masa Argel S.1,Diaz John Francis T.2

Affiliation:

1. Argel S. Masa (MBA) is at the International Master of Business Administration Program, Chung Yuan Christian University, Chung Li, Taiwan,

2. John Francis T. Diaz (PhD) is Assistant Professor at the Department of Finance and Department of Accounting, Chung Yuan Christian University, Chung Li, Taiwan,

Abstract

This research provides evidence in determining the predictability of exchange-traded notes (ETNs). It utilises commodity, currency and equity ETNs as data samples, and examines the performance of the three combinations of long-memory models, that is, autoregressive fractionally integrated moving average and generalised autoregressive conditional heteroskedasticity (ARFIMA-GARCH), autoregressive fractionally integrated moving average and fractionally integrated generalised autoregressive conditional heteroskedasticity (ARFIMA-FIGARCH) and autoregressive fractionally integrated moving average and hyperbolic generalised autoregressive conditional heteroskedasticity (ARFIMA-HYGARCH), and three forecasting horizons, that is, 1-, 5- and 20-step-ahead horizons, to model ETNs returns and volatilities. The article finds long-memory processes in ETNs; however, dual long-memory process in returns and volatilities is not verified. The research also poses a challenge to the weak-form efficiency hypothesis of Fama (1970) because lagged changes determine future values, especially in volatility. The findings also show that differences in the characteristics of commodity, currency and equity ETNs are not concluded because of similarities in ETN traits and several insignificant results. However, the presence of intermediate memory was identified, and should serve as a warning sign for investors not to keep these investments in the long run. Lastly, the ARFIMA-FIGARCH model has a slight edge over the ARFIMA-GARCH and ARFIMA-HYGARCH specifications using 1-, 5- and 20-forecast horizons. JEL Classification: G11, G17

Publisher

SAGE Publications

Subject

General Economics, Econometrics and Finance,Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3