Enhanced Screening and Research Data Collection via Automated EHR Data Capture and Early Identification of Sepsis

Author:

Umberger Reba1ORCID,Indranoi Chayawat “Yo”2,Simpson Melanie2,Jensen Rose2,Shamiyeh James2,Yende Sachin3

Affiliation:

1. Department of Acute and Tertiary Care, College of Nursing, The University of Tennessee Health Science Center, Memphis, TN, USA

2. University Health System, The University of Tennessee Medical Center, Knoxville, TN, USA

3. Department of Critical Care Medicine, University of Pittsburgh, PA, USA

Abstract

Clinical research in sepsis patients often requires gathering large amounts of longitudinal information. The electronic health record can be used to identify patients with sepsis, improve participant study recruitment, and extract data. The process of extracting data in a reliable and usable format is challenging, despite standard programming language. The aims of this project were to explore infrastructures for capturing electronic health record data and to apply criteria for identifying patients with sepsis. We conducted a prospective feasibility study to locate and capture/abstract electronic health record data for future sepsis studies. We located parameters as displayed to providers within the system and then captured data transmitted in Health Level Seven® interfaces between electronic health record systems into a prototype database. We evaluated our ability to successfully identify patients admitted with sepsis in the target intensive care unit (ICU) at two cross-sectional time points and then over a 2-month period. A majority of the selected parameters were accessible using an iterative process to locate and abstract them to the prototype database. We successfully identified patients admitted to a 20-bed ICU with sepsis using four data interfaces. Retrospectively applying similar criteria to data captured for 319 patients admitted to ICU over a 2-month period was less sensitive in identifying patients admitted directly to the ICU with sepsis. Classification into three admission categories (sepsis, no-sepsis, and other) was fair (Kappa .39) when compared with manual chart review. This project confirms reported barriers in data extraction. Data can be abstracted for future research, although more work is needed to refine and create customizable reports. We recommend that researchers engage their information technology department to electronically apply research criteria for improved research screening at the point of ICU admission. Using clinical electronic health records data to classify patients with sepsis over time is complex and challenging.

Funder

University of Tennessee Health Information Technology and Simulation Research Unit

Publisher

SAGE Publications

Subject

General Nursing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3